

- Outdrive gear ratios, max rpm limits, boat size, and propeller size
- **Lab organization**(-Grouping/leadership opportunities/cooperative learning expectations; -Timeline required)

There will be three groups 5 students (one team leader, one recorder, three problem solvers) The time line will be approx. 35-55 min.

- Summary of learning (to be finished after student completes lab)
 - -discuss real world application of learning from lab
 - -opportunity for students to share/present learning

Students are able to figure out the volume of the fuel tanks and which on holds the most fuel.

The real world application would be if you have a boat and the max WOT is 5500 rpm and you are getting 6500 rpm the engine will be damaged (valve train, pistons, etc.)

Optional activities

Propping of different size, weight boats

Career Applications Boat Mechanic

LAB TITLE: <u>Gear Ratios for Marine Engines</u> STUDENT INSTRUCTIONS:

• Statement of problem addressed by lab

We have a 4.3L Mercruiser engine with 205hp in a 18ft deep v-hull boat a 1.5:1, 1.81:1, and 2.0:1 gear ratio Alpha 1 outdrives with 21 pitch propellers. Which drive will be proper for us to reach a 5500 rpm WOT?

- **Grouping instructions and roles** There will be three groups 5 students (one team leader, one recorder, three problem solvers)
- **Procedures** steps to follow/instructions Work in groups to figure out which is the proper ratio and then write them down. We will test your answers on the boat in the water.
- Outcome instructions Your figures should get the correct WOT rpm
- Assessment instructions (peer-teacher) Score the groups by the ones that correct answers

https://wa-appliedmath.org/

Lab Data Collection

https://wa-appliedmath.org/