Unit 4:

Temperature Graphing & Extrapolation Lab

Submitted by:

Short Description: Given a thermometer, students will measure and record data (temperature) from different locations on a school campus over the period of two days. The data will be used by students to calculate differences (whole number and percentage) in temperature, and extrapolate their findings for a hypothetical third day.

LAB PLAN

TEACHER: Teacher Prep/Lesson Plan

- Lab Objective
 Students will...
 - Research data about temperature in different locations on school grounds.
 - Create a graph showing temperatures and locations.
 - Correctly answer questions about the graph.
 - Make future predictions using graph data to support their findings.
- Statement of pre-requisite skills needed (i.e., vocabulary, measurement techniques, formulas, etc.)
 - o thermometer reading in degrees Fahrenheit
 - o scientific notation for degrees Fahrenheit
 - knowledge of bar graph and pie chart terminology and application
 - extrapolation using graph data
 - o computing mathematic ratios
- New Vocabulary
 - o extrapolation
 - o confounding variable
- Materials List
 - 10 thermometers capable of measuring room temperature
 - o paper / pencil (each student)
 - o student worksheet
 - o teacher graph template
 - o document camera
 - 2 different colored markers
 - calculator (each student)

• GLE's addressed

 M 2.2.1 - Apply strategies, concepts, and procedures to devise a plan to solve the problem

iedmath.org

- o M 2.2.2 Apply mathematical tools to solve problems
- M 4.1.1 Understand how to develop or apply an efficient system for collecting mathematical information for a given purpose.

- Set-up information
 - make student worksheet copies (1 for each student)
 - select a 2-day period where the weather forecast indicates a definite change in temperature
 - o gather all needed supplies
- Lab organization
 - o students split into 10 teams (modify for class size needs)
 - leadership positions: thermometer captain (safeguards equipment); record keeper (records data accurately); policy keeper (group follows guidelines of lab)
 - cooperative learning in small groups
 - Timeline:

<u>Day 1 (50 min):</u>

- As a whole class, brief overview of lab / instructions (5 min.)
- As a whole class, overview of student worksheet (5 min.)
- Formation of groups and role assignments. Each group is assigned to two adjacent locations (5 min.)
- As a whole class in small groups, thermometer calibration / homeroom temperature measures (5 min.)
- In small groups, temperatures taken at locations (10 min.)
- As a whole class, temperatures reported, averaged, and recorded on teacher bar graph template. (15 min.)
- Individually, students record data on their student worksheet. (5 min.)
 Day 2 (80 min):
- As a whole class, brief overview of lab / instructions (5 min.)
- As a whole class, thermometer calibration / homeroom temperature measures (5 min.)
- In small groups, temperatures taken at locations (10 min.)
- As a whole class in small groups, temperatures reported, averaged, and recorded on teacher bar graph template. (10 min.)
- Individually, students record data on their student worksheet. (5 min.)
- Individually, students complete worksheet using data to extrapolate future temperature (25 min.)
- In small groups, students compare their results and make modifications where appropriate (5 min.)
- As a whole class, small groups share their results / projections. Teacher facilitates discussion of key concepts and provides clarification (30 min.)
- Teacher Assessment of student learning(scoring guide, rubric)
 - Guide will vary depending on temperatures recorded
 - Discussion of key concepts (confounding variables, etc.)
 - o key concepts covered on Unit quiz
- Summary of learning(to be finished after student completes lab)
 - \circ $\;$ discuss real world application of learning from lab
 - o opportunity for student to share/present learning

Career Applications

- contractor / air & heating: installation of units in different building types and locations
- \circ tourism / recreation: vacation planning, activity planning
- household management: planning outing

STUDENT INSTRUCTIONS:

- Statement of problem addressed by lab
 - How does outdoor temperature affect the temperature at different locations on our school's campus?
 - What are the implications for future temperature fluctuations on our campus?
- Grouping instructions roles
 - Students are grouped into 10 teams
 - o Within teams, students decide who will take which leadership position
 - thermometer captain (safeguards equipment)
 - record keeper (records data accurately)
 - policy keeper (group follows guidelines and expectations of lab)
- Procedures steps to follow/instructions
 - Hold thermometer stationary at each location for 3 minutes.
 - After 3 minutes, record the temperate indicated on the thermometer in degrees Fahrenheit.
 - Return to class within 10 minutes.
 - Report data to class. Complete student worksheet using class data (data is averaged for each location to create one temperature).
- Outcome instructions
 - Data collecting
 - Extrapolation using percent increases / decreases
- Assessment instructions (peer-teacher)
 - Students: work in small groups to share results and provide peer:peer tutoring. This is conducted after completing the student worksheets individually,
 - Teacher: assesses student knowledge and understanding during whole class discussion, and by small group observations.

https://wa-appliedmath.org/

Unit 4 - Temperature Graphing & Extrapolation Lab

Name:

Difference

Day 2 v. 3

+10° F

Period: _____

% Change Work Area

Show All Work

Date: ___/__/

%

Change

Criteria: (Write the problem/objective in statement form)

Data Collection: (Record data in degrees Fahrenheit)

LocationTemp.
Day 1Difference
Day 2% Change Work Area
Show All Work%
ChangeTemp.
Day 3Outside Main Office
(in shade)Image: Show All WorkImage: Show All WorkImage: Show All WorkImage: Show All WorkImage: Show All WorkInside Main OfficeImage: Show All WorkImage: Show All WorkImage: Show All WorkImage: Show All WorkImage: Show All WorkInside Main OfficeImage: Show All WorkImage: Show All WorkImage: Show All WorkImage: Show All WorkImage: Show All Work

Inside Main Office			
Homeroom			
Cafeteria (in middle)		Cound	
Parking Lot (in middle)			
Gym (middle of a wall)			
	htt	ps://wa-appliedr	

Extrapolations Day 3: Use data from Collection table to extrapolate location temperatures for Day 3. Use the percent increase of the different locations as a basis for your projections (you can consider other factors as well). Support your projections with data and logical reasoning. Show all work.

Location	Projected	Temp.	% Change Work Area	Projected	Reasoning for Projections
	% Change	Day 2	Show All Work	Temp. Day 3	
Outside Main Office (in shade)			achino		Assumed Day 3 temperature is +10°F
Inside Main Office					
Homeroom					
Cafeteria (in middle)			A P P I C		
Parking Lot (in middle)					
Gym (middle of a wall)			Nati		

What are three confounding variables that may affect your projections? Explain your reasoning.

1.

Council

2.

3.

https://wa-appliedmath.org/