Name(s): Kari L. Toms, ktoms@eagles.edu Lesson Title: Present Value of Investments Date:

Text: Financial Algebra, 2 nd Edition, Gerver/Si	rgoi Lesson Length: 3 period (55 min)	
Domain: Interpreting Functions		
Big Idea (Cluster): Interpret Functions that arise	e in applications in terms of context	
Common Core State Standards: F-IF4, A-SSE3	3, A-CED4, F-IF8b	
Mathematical Practice(s): Functions, graphing		
Content Objectives: Calculate PV	Language Objectives:	
Vocabulary: Periodic Investment, Rates Connections Prior to Learning		
Questions to Develop Mathematical Thinking: Common Misconceptions:		
Present Value dollars are always worth more		
(Cash is King) In Economics, maybe, but PV is		
powerful goal-setting method of compound		
	forecasting.	

Assessment (Formative and Summative):

- Formative: vocabulary worksheet comprehension and equation graphing; daily check-out
- Summative: Quiz after both single deposit and periodic deposit investment, showing both formulas, substitution, and graphed solutions.

Materials:

- 3-8 Worksheet 1
- 3-8 Worksheet 2 "Saving for a car" with Mini-Lab
- MS Excel
- Scientific Calculator

Instruction Plan: (Day 1)

Launch: Goal Setting Ideas discussion with students? What do you see a big ticket spending items in your future? How long from now? How much does that cost? Can we invest to get ahead of that? Explore: Warm-up questions on board – then Worksheet 3-8 (1) on own.

ASK: Does anyone have a big ticket item they're saving for? How much does that cost? Gather student responses on board. I.E. List items like: new motorcycle, \$6,500. Community College Tuition, \$3,000, New Tires, \$500, etc.

WRITE ON BOARD: Learning Target: I can calculate the present value dollars needed to be invested to reach a goal.

GOALS ON BOARD

Ask: Are you going to set aside money in one-lump sum or a little each month? Show hands.

PV=

Single-deposit (Lump-sum) Formula

FV

(1 + r/n)^{nt}

Motorcycle Example \$6,500 is needed in two years.

The local bank will pay 7.1% a year in a money market account, compounded monthly. Let's substitute values into the formula.

WAMC Lesson Plan

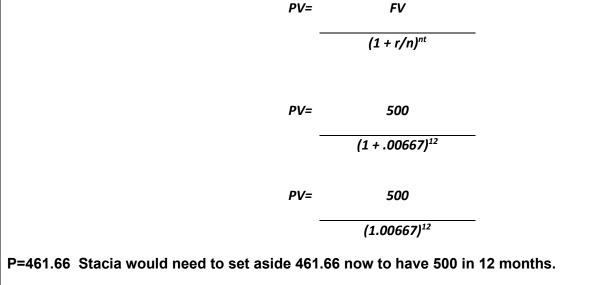
6.500
0,500

(1.005916)²⁴

The single-deposit needed to save for \$6,500 in the future is \$5641.90. How much interest will this person have earned? \$6500-5641.90=858.10 will have been earned in "free money" by allowing interest to accrue.

PV=

What is if you don't have \$5641 right now? You can attack this another way, by saving dollars each month at present value for use later on. This formula works like this:


P=	FV x (r/n)
_	(1 + r/n) ^{nt} -1
P=	6,500 x .005916
-	(1 + .005916) ²⁴ -1
P=	38.454
-	.15208

P=\$252.85 You would need to save \$252.85 a month. That sounds more reasonable. If you're working at Washington minimum wage (9.32/hr in 2014), you'll take home about 85% of your earnings, which is 7.92/hr. How many hours a month would you need to work in order to make the deposit for the motorcycle? Round to the next full hour. 252.85/7.92=31.93, 32 hours of work would be needed to make this savings commitment.

One more example before I turn them loose on their own:

New Tires for my car:

Stacia will need new snow tires next winter for her car. She has a quote for \$500 for the new tires. She'll need them in about 12 months. If she uses present value dollars to save and invest at 8% nominal interest, compounded monthly, how much will she need to deposit in a single deposit if she wants to buy the tires?

WAMC Lesson Plan

What would Stacia need to save each month, if sh	e decided to make a deposit each month for the
tires?	FV x (r/n)
_	
	$(1 + r/n)^{nt} - 1$
P=	500 x (.00667)
_	(1 + .00667) ¹² -1
P=	3.335
_	.08304
P=40.16. Stacia would need to save 40.16 a mon How many hours will she need to work to set asid earns 9.32/hr and takes home about 85% of her p hours a month just to save for tires.	
Think: How much total did Stacia earn in interest STRATEGY: 12 months *40.16 per month = 481.92 in payment \$500 value – 481.92 = 18.08 in interest earned	
Now, hand out the worksheets to have students se	olve items on their own.
Allow 15-18 minutes for students to calculate data their progress documented by the teacher and rec	
DAY 2- Students will calculate their present value function	is to achieve real goals.
Write on board: I can calculate and graph the pre	sent value function, using coordinate pairs.
	. Three car options are listed. Students will need ints needed to purchase a car in 2 years, record the e wages.
For those needing more time, modify the assignm options.	ent to only compare the 2/4 th (even) options or odd
or other job posting sites. Print out job pos	sing and calculate the deposit and work hours
OFFER QUIZ AT BEGINNING OF DAY 3 Review answers to quiz at end of day 3.	
When I observe students: Verify formatively that t essential items and restructuring items into formul in the calculator!	they are de-constructing problems, underlining a properly. Make sure they are using parentheses

WAMC Lesson Plan

Questions to Develop Mathematical Thinking as you observe: A)Is it better to make many small deposits or one large one? B)How can I compare interest rates, when they compound at varied frequencies? Answers: A) Answers vary, but should consider the number of compounds, as well as the rate for a factor calculation. B) Show them how a factor is derived to find what-if scenarios for comparison. Summarize: Can students see the effect of saving early in small amounts for investments? Discuss the growth. For new learners, the project may be initially scaffolded with table factors pre-determined to demonstrate the principle with a simpler approach. Administer Quiz at beginning of Day 2, prior to discussing next future value concept. Career Application(s): Investing percentages of income earned into investment accounts • Saving income for goals determined (car, tuition, travel, etc) 21st Century Skills and Interdisciplinary Themes: 21st Century Interdisciplinary themes (Check those that apply to the above activity.) X Financial/Economic/Business/Entrepreneurial Literacy Global Awareness Civic Literacy Health/Safety Literacy Environmental Literacy 21st Century Skills (Check those that students will demonstrate in the above activity.) LEARNING AND INNOVATION **INFORMATION, MEDIA & LIFE & CAREER SKILLS** Productivity and Creativity and Innovation Flexibility and Adaptability TECHNOLOGY SKILLS Accountability

	Information Literacy		Invianage Projects
Work Creatively with Others	Access and Evaluate	Be Flexible	Produce Results
Implement Innovations	Information	Initiative and Self-Direction	Leadership and
Critical Thinking and Problem Solving	Use and manage Information	Manage Goals and Time	Responsibility
Reason Effectively	Media Literacy	Work Independently	Guide and Lead
Use Systems Thinking	Analyze Media	Be Self-Directed Learners	Others
Make Judgments and Decisions	Create Media Products	Social and Cross-Cultural	Be Responsible
X Solve Problems	Information, Communications and	Interact Effectively with	to Others
Communication and Collaboration	<u>Technology (ICT Literacy)</u>	Others	
Communicate Clearly	X Apply Technology Effectively	Work Effectively in Diverse	
Collaborate with Others		Teams	

Scaffolding for newer learners: Use table factors for periods.

Extension for advanced learners: Utilize amortization and sinking fund problems for present and future values over time. Graph account values in sinking funds and amortization.

Chapter 3-8 Problems

1. In reference David Bach quote, students should be reflecting upon financial goals before they can calculate what they need. For example, saving tuition for college, money for a car, cannot begin with any accuracy until a goal figure is determined.

2.

	a.	889.00			
	b.	2154.17			
	с.	6084.13			
	d.	40,136.04			
3.					
	a.	5285.49			
	b.	3043.89			
	с.	2072.04			
	d.	2726.47			
4.		P=		50,000 x (.0	42)
	Per	iodic Deposit		(1.042) ⁷ -1	<u>·</u>
		•	P=	2,100	
	Per	iodic Deposit		.33375	
	6292.1	า			
	0292.1	3			
5.	182.53			P=	80,000 x (.00229)
		Dori	odic De		(1.00229) ²⁴⁰ -1
		7 СП	oune De	posit	(1.00225) -1
				P=	183.20
		Peri	odic De		
		Peri	odic De		183.20 1.00369
		Peri	odic De		
C			odic De		
6.	1651.8		odic De		
6.	1651.8			posit	1.00369
6.		9	odic De P=	posit 10,000 x (.00	1.00369 354)
6.				posit	1.00369 354)
6.		9		posit 10,000 x (.00	1.00369 354)
6.	Peri	9	P=	posit <u>10,000 x (.003</u> (1.00354) ^{6.}	1.00369 354)
6.	Peri	9 iodic Deposit	P=	posit <u>10,000 x (.003</u> (1.00354) ⁶ 35.40	1.00369 354)
6.	Peri	9 iodic Deposit iodic Deposit	P=	posit <u>10,000 x (.003</u> (1.00354) ⁶ 35.40	1.00369 354)
	Peri Peri	9 iodic Deposit iodic Deposit	P=	posit <u>10,000 x (.003</u> (1.00354) ⁶ <u>35.40</u> .02143 10,000 x (.4	1.00369 354) .1 00367)
	Peri Peri 260.34	9 iodic Deposit iodic Deposit	P=	posit <u>10,000 x (.003</u> (1.00354) ^{6.} <u>35.40</u> .02143	1.00369 354) .1 00367)
	Peri Peri 260.34	9 iodic Deposit iodic Deposit	P= P= P=	posit <u>10,000 x (.003</u> (1.00354) ⁶ <u>35.40</u> .02143 <u>10,000 x (.1</u> (1.00367	1.00369 354) 1 00367) 1) ³⁶ -1
	Peri Peri 260.34 P	9 iodic Deposit iodic Deposit	P=	posit <u>10,000 x (.003</u> (1.00354) ⁶ <u>35.40</u> .02143 10,000 x (.4	1.00369 354) .1 00367) 1) ³⁶ -1

8. 11,671.75

	P=	100,000 x (.0195)	
Periodic Deposit		(1.0195) ⁸ -1	
	P=	1,950	
Periodic Deposit		.16707	

9. 37,123.52

PV=	50,000	
	(1.015) ²⁰	

10.

	P=	75,000 x (.002583)
Periodic Deposit	_	(1.002583) ^x -1
	P=	193.725
Periodic Deposit	_	(1.002583) [×] -1

NAME:_____

PERIOD: _____

Chapter 3-8 Worksheet 1: Calculating Present Value of an Investment

PV OF A SINGLE DEPOSIT

The single deposit formula can be used to find the present value of a one-time investment.

$$PV = \frac{FV}{(1 + r/n)^{nt}}$$

- 1. Underline the elements needed in this problem to fulfill the formula listed above, then calculate the amount needed:
 - a. Shyandra would like to be able to purchase a car after graduation. She thinks she will need about \$4,000 for her first car. How much will she need to deposit into an account now to have the car in 18 months? Her credit union is currently paying 5% on 6-month, renewable CDs.
 - **b.** Would it be a better deal for Shyandra to not bank at her usual credit union and place her car money into an account that yielded 8%, compounded quarterly for the next year-and-a-half?

PV of Periodic Deposit Investments

The periodic deposit formula can be used to find the present value of a repeating investment.

P=

- 2. Underline the elements needed in this problem to fulfill the formula listed above, then solve for the present value needed.
 - a. Emmanuel would like to be able to pay for his community college tuition to graduate with his associate's degree debt-free. He estimates he will need about \$6,750 in two years. How much must he deposit each month, if his account yields 4.75%, compounded monthly?
 - b. How many hours each month must Emmanuel work just to earn this college money, if he works for \$9/hour gross, and his take-home wages are about 85% of the gross pay? Round up to the next full hour.

NAME:_____

PERIOD: _____

Chapter 3-8 Worksheet 1: Calculating Present Value of an Investment

PV OF A SINGLE DEPOSIT

The single deposit formula can be used to find the present value of a one-time investment.

$$PV = \frac{FV}{(1 + r/n)^{nt}}$$

- 1. Underline the elements needed in this problem to fulfill the formula listed above, then calculate the amount needed:
 - a. Shyandra would like to be able to purchase a car after graduation. She thinks she will need about \$4,000 for her first car. How much will she need to deposit into an account now to have the car in 18 months? Her credit union is currently paying 5% on 6-month, renewable CDs. 3714.40
 - **b.** Would it be a better deal for Shyandra to not bank at her usual credit union and place her car money into an account that yielded 8%, compounded quarterly for the next year-and-a-half? **Yes, she'd have to deposit less. 3551.89, a savings of 161.39**

PV of Periodic Deposit Investments

The periodic deposit formula can be used to find the present value of a repeating investment.

P=

- 2. Underline the elements needed in this problem to fulfill the formula listed above, then solve for the present value needed.
 - Emmanuel would like to be able to pay for his community college tuition to graduate with his associate's degree debt-free. He estimates he will need about \$6,750 in two years. How much must he deposit each month, if his account yields 4.75%, compounded monthly? \$268.65
 - b. How many hours each month must Emmanuel work just to earn this college money, if he works for \$9/hour gross, and his take-home wages are about 85% of the gross pay? Round up to the next full hour.
 - i. 9*.85 =7.65/hr net pay
 - ii. 268.65/7.65=35.11, rounds up to 36 hours a month

Name:	
PERIOD:	

Chapter 3-8 Present Values, "Shopping for a Car"

Suppose you have landed a job, earning \$9.32/hr for the time being. If all goes well, after 6 months, you should receive an agreed upon raise to \$10.15/hr. Since you have a job, your parents have agreed to let you continue driving their car until you graduate. Now, you have to decide if you'd like to purchase a car after graduation. The four cars listed below are representative options of what is currently available in the marketplace.

Calculate the periodic deposit required of you to save up enough money for a car after graduation. You have two years to save the money. Your bank is offering an investment at 11% APR, compounded monthly.

$$P = \frac{FV x (r/n)}{(1 + r/n)^{nt} - 1}$$

- 1) Calculate the monthly deposit required to save up for each one of these autos, using the present value, periodic deposit formula.
- 2) Calculate how many hours you'll need to work just to make enough for the auto deposit for the first six months AND the remaining 18 months (after your raise).
- 3) Do you think you'd be able to save enough with the periodic deposits to purchase a car with your investment (as opposed to having a payment later?)
- 4) For extra credit, find and print out an advertisement for a car that you'd personally prefer and calculate the deposit needed, as well as the hours necessary to fund that account.
- 5) After calculating, try it again with 3 years to save does that make it seem less expensive?

	Option 1	Option 2	Option 3	Option 4
	2014 Honda	2014 Chevrolet Silverado	1968 VW	1994 Toyota Camry
	Civic Coupe	1500 LT	Beetle	
	\$18, 190	\$29,410	\$7,000	\$4500
DEPOSIT				
Hours @ Wage 1				
Hours @ Wage 2				

Chapter 3-8 Present Values, "Shopping for a Car"

Suppose you have landed a job, earning \$9.32/hr for the time being. If all goes well, after 6 months, you should receive an agreed upon raise to \$10.15/hr. Since you have a job, your parents have agreed to let you continue driving their car until you graduate. Now, you have to decide if you'd like to purchase a car after graduation. The four cars listed below are representative options of what is currently available in the marketplace.

Calculate the periodic deposit required of you to save up enough money for a car after graduation. You have two years to save the money. Your take-home pay is about 82% of our hourly pay. Your bank is offering an investment at 11% APR, compounded monthly.

$$P = \frac{FV x (r/n)}{(1 + r/n)^{nt} - 1}$$

- 1) Calculate the monthly deposit required to save up for each one of these autos, using the present value, periodic deposit formula.
- 2) Calculate how many hours you'll need to work just to make enough for the auto deposit for the first six months AND the remaining 18 months (after your raise).
- 3) Do you think you'd be able to save enough with the periodic deposits to purchase a car with your investment (as opposed to having a payment later?)
- 4) For extra credit, find and print out an advertisement for a car that you'd personally prefer and calculate the deposit needed, as well as the hours necessary to fund that account.
- 5) Now, try just the monthly deposit again with 3 years to save does that make it seem less expensive?

	Option 1	Option 2	Option 3	Option 4
	2014 Honda	2014 Chevrolet Silverado 1500	1968 VW	1994 Toyota Camry
	Civic Coupe	LT	Beetle	
	\$18, 190	\$29,410	\$7,000	\$4,500
Save	681.02 for 2 yrs	1101.09 for 2 years	262.07 for 2yrs	168.48 for 2 yrs
Hours first 6 months	681.02/7.64=89.1 90 hours/mo	144.12, 145 hours	34.3, 35 hours	22.05, 23 hours/mo
Hours /month	681.02/8.32=81.8 82 hours/mo	132.34, 133 hours	31.49, 32 hours	20.25, 21 hours/mo
3yr	428.75	693.22	165.00	106.07

$$P = \frac{FV \times (.00917)}{(1.00917)^{24} \cdot 1} \qquad P = \frac{FV \times (.00917)}{(1.00917)^{36} \cdot 1}$$

$$P = \frac{FV \times (.00917)}{.24493} \qquad P = \frac{FV \times (.00917)}{.38904}$$

NAME:	
PERIOD:_	

Chapter 3-8 Quiz, Present Value

1. Calculate the both the lump-sum and periodic deposit required of you to save up enough money for a \$10,000 car after graduation. You have two years to save the money. Your bank is offering an investment at 8% APR, compounded quarterly. Show your equations and calculations.

2. Suppose you'd like to save to buy a home when you turn 30 years old. In 13 years, will you be able to buy a \$500,000 home on an investment with APR of 7.25%, compounded monthly? What would be the monthly deposit needed to fund this account? Is this reasonable? Why or why not?

NAME:		
PERIOD:_		

Chapter 3-8 Quiz, Present Value

1. Calculate the both the lump-sum and periodic deposit required of you to save up enough money for a \$10,000 car after graduation. You have two years to save the money. Your bank is offering an investment at 8% APR, compounded quarterly. Show your equations and calculations.

	P =	10,000
Lump Sum Deposit	_	(1.02) ⁸

Lump Sum Needed = \$8,534.90

	P=	10,000 x (.02)
Periodic Deposit		(1.02) ⁸ -1

Periodic Deposit Needed = \$1165.09

2. Suppose you'd like to save to buy a home when you turn 30 years old. In 13 years, will you be able to buy a \$500,000 home on an investment with APR of 7.25%, compounded monthly? What would be the monthly deposit needed to fund this account? Is this reasonable? Why or why not?

	P=	500,000 x (.00604)
Periodic Deposit		(1.00604) ¹⁵⁶ -1
	P=	3,020
Periodic Deposit	_	1.55846

Periodic Deposit Required \$1937.81