WAMC Lab Template

Math Concept(s): Number Sense: Expense Function, Depreciation Function, Exponential

Depreciation equation

Source / Text: Financial Algegra Chapter 5-6

Developed by:Dana Lybeck lybeck.dana@yakimaschools.org

Date: Summer In-service 2013

Attach the following documents:

Lab Instructions

Student Handout(s)

Rubric and/or Assessment Tool

Short Description (Be sure to include where in your instruction this lab takes place):

Lab Plan

Lab Title: 2013 Exponential Automobile Depreciation vs. Linear Depreciation

Prerequisite skills: Completion of 5-5 and 5-6 in text

Lab objective: To compare Linear and Exponential Depreciation and identify which is closer to the information given by Kelly Blue Book.

Standards:

CCSS-M: A-CED2, A-CED3, F-IF6, F-IF7e, F-IF8b, F-IF9, F-LE1c, F-LE5, S-ID6

Standards for Mathematical Practice:

MP1, MP2, MP3, MP4, MP5

State Standards addressed (2008 Washington State Mathematics Standards):

Reading:

•

Writing:

•

Leadership/21st Century Skills:

	ose that apply to the above activity.) ial/Economic/Business/Entrepreneurial Liter nmental Literacy	acy Civic Literacy		
21st Century Skills (Check those that students will demonstrate in the above activity.)				
LEARNING AND INNOVATION	INFORMATION, MEDIA &	LIFE & CAREER SKILLS	Productivity and	
Creativity and Innovation	TECHNOLOGY SKILLS	Flexibility and Adaptability	Accountability	
x ☐ Think Creatively	Information Literacy	☐ Adapt to Change		
☐ Work Creatively with Others	x Access and Evaluate Information	☐ Be Flexible	x☐ Produce Results	
☐ Implement Innovations	x Use and manage Information	Initiative and Self-Direction	Leadership and	
Critical Thinking and Problem Solving	Media Literacy	x ☐ Manage Goals and Time	Responsibility	
x Reason Effectively	x Analyze Media	x Work Independently	☐ Guide and Lead	
☐ Use Systems Thinking	☐ Create Media Products	x ☐ Be Self-Directed Learners	Others	
x Make Judgments and Decisions	Information, Communications and	Social and Cross-Cultural	☐ Be Responsible to	

Teacher Preparation: (What materials and set-up are required for this lab?)

Materials

Calculator, graph paper, colored pens, rulers, (laptops for extension)

Set-Up Required:

None

Lab Organization Strategies:

Grouping/Leadership/Presentation Opportunities:

Individual Lab

Cooperative Learning:

Pair Share

Expectations:

• Students will use the appropriate functions to create graphs to compare depreciation. They will analyze which graph is more realistic and explain why.

Timeline:

60 minutes or one period

Post Lab Follow-Up/conclusions:

Discuss real world application of learning from lab

 Recognizing depreciation on vehicles and importance of not owing more than your car is worth.

Career Applications

· Finance, Car Dealership

Optional or Extension Activities

Review true car depreciation using Kelly Blue Book or NADA on new or used cars.

https://wa-appliedmath.org/

Comparing Exponential and Linear Depreciation

Name	Pd
You are going to investigate the Exponential versus Linear Depreciation on neor \$22,300 and after two years is worth \$18,500.	
Please follow the directions to calculate depreciation using the Exponential Deusing the Linear Depreciation Function on a \$22, 300 car	ecay Function and again
1. Using the Exponential Decay Function, write the equation for the car's of	depreciation.
 Use graph paper to graph your equation ensuring that your intervals axis are labelled. (Remember time in years is on the x axis) 	are appropriate and all
3. Using the Linear Depreciation Function and a rate of depreciation of \$2 equation for the car's depreciation.	2,000 per year, write the
4. Using the same graph to plot the Linear Depreciation. Use a different of	colored pen.
5. Analyze the graphs and explain why you believe one line shows a more	e realistic depreciation.
6. Realizing that all cars will always have some value, even if it's only a hor scrap metal, rewrite your Exponential Decay Function to include this	•
Extend your learning:	
7. Define Asymptote:	·
8. What is the asymptote of your new equation and can you identify and I	abel it on your graph?

Answer Key

- 1. Y=\$22,300(1-.085)^t
- 2. Answers will vary and should resemble an exponential decay graph. Y intervals should have even intervals from 0 to 22,500.
- 3. Y = -2,000x + \$22,300
- 4. Answers graphed on same graph and starts at \$22,300 on the Y axis and has a negative slope. It should cross the x axis at 11.15 years.
- 5. Answers will vary, however, the goal is for students to recognize that a car should never have a zero value and realistically exponential decay is more indicitive of reality.
- 6. $Y=$22,300(1-.085)^t + 100$
- 7. Asymptote is a line that a graph approaches but never touches or intersects.
- 8. \$100

https://wa-appliedmath.org/