WAMC Lab Template: Lamborghini Lab

Math Concept(s): Data Collection, Function Creation Source / Text: Developed by: Casey Lange, Keri Hampton, Catherine Ventura E-Mail: <u>langecq@puyallup.k12.wa.us</u>, <u>khampton@cloverpark.k12.wa.us</u>, <u>ventucn@puyallup.k12.wa.us</u> Date: Summer In-service 2013

Attach the following documents:

Lab Instructions

Student Handout(s)

Rubric and/or Assessment Tool

Short Description (Be sure to include where in your instruction this lab takes place):

Students will be given a Hot Wheel car with a wind-up knob. They will then do a variety of torques to calculate the distance the car can travel per torque. Students will then need to graph their data points to create a linear regression formula for the data.

Lab Plan

Lab Title: Lamborghini Lab

Prerequisite skills: Plotting Data, Creating Equations, Linear Regression

Lab objective: Students will be able to create a function from data points.

Standards:

CCSS-M:

- <u>A-CED 1:</u> Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions.
- <u>A-CED 2:</u> Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.
- <u>A-CED 3</u>: Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context. For example, represent inequalities describing nutritional and cost constraints on combinations of different foods.
- <u>F-IF 4:</u> For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship.
- <u>F-IF 6:</u> Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.
 - **<u>F-BF 1</u>**: Write a function that describes a relationship between two quantities.

Standards for Mathematical Practice:

- 1) Make sense of problems and persevere in solving them.
- 2) Reason abstractly and quantitatively.
- 4) Model with mathematics.
- 6) Attend to precision.
- 7) Look for and make use of structure.

State Standards addressed (2008 Washington State Mathematics Standards):

- A1.1.A Select and justify functions and equations to model and solve problems.
- <u>A1.2.D</u> Determine whether approximations or exact values of real numbers are appropriate, depending on the context, and justify the selection.
- <u>A1.3.B</u> Represent a function with a symbolic expression, as a graph, in a table, and using words, and make connections among these representations.
- <u>A1.6.A</u> Use and evaluate the accuracy of summary statistics to describe and compare data sets.
- A1.6.B Make valid inferences and draw conclusions based on data.
- <u>A1.6.D</u> Find the equation of a linear function that best fits bivariate data that are linearly related, interpret the slope and y-intercept of the line, and use the equation to make predictions.

Reading:

•

Writing:

 Students will write to respond to the key question "Why don't we have wind-up cars in real life?"

Leadership/21st Century Skills:

21st Century Interdisciplinary themes (C Global Awareness Health/Safety Literacy	Check those that apply to the above activity.) Financial/Economic/Business/Entrepreneurial Liter Environmental Literacy	acy Civic Literacy	
21st Century Skills (Check those that st	udents will demonstrate in the above activity.)		
LEARNING AND INNOVATION	INFORMATION, MEDIA &	LIFE & CAREER SKILLS	Productivity and
Creativity and Innovation	TECHNOLOGY SKILLS	Flexibility and Adaptability	Accountability
Think Creatively	Information Literacy	Adapt to Change	Manage Projects
Work Creatively with Others	Access and Evaluate Information	Be Flexible	Produce Results
Implement Innovations	Use and manage Information	Initiative and Self-Direction	Leadership and
Critical Thinking and Problem Solving	Media Literacy	Manage Goals and Time	Responsibility
Reason Effectively	Analyze Media	Work Independently	Guide and Lead
Use Systems Thinking	Create Media Products	Be Self-Directed Learners	Others
Make Judgments and Decisions	Information, Communications and	Social and Cross-Cultural	Be Responsible to
Solve Problems	Technology (ICT Literacy)	Interact Effectively with Others	Others
Communication and Collaboration	Apply Technology Effectively	Work Effectively in Diverse Teams	
Communicate Clearly		-	
Collaborate with Others			

https://wa-appliedmath.org/

Teacher Preparation: (What materials and set-up are required for this lab?)

Materials

• Twist wind up cars, measuring tape, graph paper

Set-Up Required:

• Safe outside area or hallway/gymnasium

Lab Organization Strategies:

Grouping/Leadership/Presentation Opportunities:

- Groups of three A data keeper, Torquer, Measurer
- Report their finding to the class at conclusion of lab

Cooperative Learning:

• Students are given the basic outline, key questions to answer and graph paper. They must work together to create a graph and determine the best way to represent their data

Expectations:

- Create a graph with variables of twist and distance
- Create an equation that reflects data collected
- Written response to "Why don't we have twist cars in the real world?"

Timeline:

• 60 min class period

Post Lab Follow-Up/conclusions:

Discuss real world application of learning from lab

- Key Questions
 - Why don't we drive wind-up cars in the real world?
 - o Compare miles per gallon to inches per twist?
 - o Which car was most economical? Inches per twist

Career Applications

- Engineering
- Science (Data Collection)

Optional or Extension Activities

- Key Questions- Extension
 - Would it be possible for the wind up car to travel a 1/4 mile?
 - What is the range? Is it infinite?
- Optional Supports
 - o Prepared data collect/graph sheet

https://wa-appliedmath.org/

Key Question: Why don't we have wind-up cars in the real world?

What is the function of your data? (Enter your equation here)
Why don't we have twist cars in the real world?
Compare miles per gallon to inches per twist?
Which car was most economical? (Inches per twist) How do you know?
Would it be possible for the wind up car to travel a ¼ mile?
What is the range? Is it infinite? https://wa-appliedmath.org/

Bonus Extension:

How many twists are equivalent to a gallon of gas? (Let's use the example of a car that gets 25 miles per gallon.)

2nd. Input your data into the proportion below.

1st. Choose a data point from your graph.

 $\frac{8 \text{ twists}}{38 \text{ inches}} = \frac{?}{25 \text{mi } x \text{ 5280 ft } x12 \text{in}}$

3rd. Solve for the missing value.

Math Council

https://wa-appliedmath.org/