WAMC Lab Template

Math Concept(s): Slope, y-intercept form of linear equations Source / Text:

Developed by: N Betsy Kimmel

E-Mail: nkimmel@cloverpark.k12.wa.us

Date: 6/25/24

Attach the following documents:

- Lab Instructions
- Student Handout(s)
- Rubric and/or Assessment Tool

Short Description (Be sure to include where in your instruction this lab takes place):

• Students will develop a linear equation (best-fit line) for height of a race track vs. distance traveled for a matchbox car.

IB Components

Key Concepts:RelationshipsRelated Concept:Equivalence and ApproximationGlobal Context:Scientific and Technical InnovationSOI:Technical approximate relationships can be codified into equivalent equations.ATL:Self-management, researchLPT:Principles, Open-minded, InquirerInquiry Question:

<u>Lab Plan</u>

Lab Title: How far can the car travel?

Prerequisite skills: observation, measurement, collaboration,

Lab objective: graph data points, develop a linear equation, predict the distance based on height of track.

Standards: (Note SPECIFIC relationship to Science, Technology, and/or Engineering) Mathematics K–12 Learning Standards:

- B. Understand the connections between proportional relationships, lines, and linear equations. 5. 8.EE.B.5 Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways.
- B. Solve equations and inequalities in one variable 3. HSA-REI.B.3 Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters

Standards for Mathematical Practice:

- Model with mathematics.
- Construct viable arguments and critique the reasoning of others.

<u>K-12 Learning Standards-ELA</u> (Reading, Writing, Speaking & Listening):

- Production and Distribution of Writing: Produce clear and coherent writing in which the development,
 organization, and style are appropriate to task, purpose, and audience.
- Comprehension and Collaboration 2. Integrate and evaluate information presented in diverse media and formats, including visually, quantitatively, and orally

K-12 Science Standards

• HS-PS2-2 Use mathematical representations to support the claim that the total momentum of a system of objects is conserved when there is no net force on the system.

Technology

5. Computational Thinker - Students develop and employ strategies for understanding and solving
problems in ways that leverage the power of technological methods to develop and test solutions. 5.a.
Students practice defining problems to solve by computing for data analysis, modeling or algorithmic
thinking

Engineering

Leadership/21st Century Ski	ls:	21	
	al/Economic/Business/Entrepreneurial Li mental Literacy	teracy	
LEARNING AND INNOVATION Creativity and Innovation X Think Creatively X Work Creatively with Others Implement Innovations Critical Thinking and Problem Solving X Reason Effectively Use Systems Thinking X Make Judgments and Decisions X Solve Problems Communication and Collaboration X Collaborate with Others	INFORMATION, MEDIA & TECHNOLOGY SKILLS Information Literacy X Access and Evaluate Information X Use and manage Information Media Literacy Analyze Media Create Media Products Information, Communications and Technology (ICT Literacy) Apply Technology Effectively	LIFE & CAREER SKILLS Flexibility and Adaptability X Adapt to Change X Be Flexible Initiative and Self-Direction Manage Goals and Time Work Independently Be Self-Directed Learners Social and Cross-Cultural Interact Effectively with Others Work Effectively in Diverse Teams	Productivity and Accountability x □ Manage Projects x □ Produce Results Leadership and Responsibility □ Guide and Lead Others □ Be Responsible to Others

Teacher Preparation: (What materials and set-up are required for this lab?)

Materials

- Matchbox cars (1 per group of 3 students)
- Racetracks (1 per group of 3 students)
- Recording sheet
- Presentation sheet

liedmath.org/

• Materials to change height of track (ex: stacks of books)

Set-Up Required:

• Each group needs materials

Lab Organization Strategies:

Leadership (Connect to 21st Century Skills selected):

- Students will work collaboratively to collect and evaluate information
- Students will manage their exploration phase and produce a linear equation Cooperative Learning:
 - Students will work together to explore height vs. distance, collecting data in an organized manner to produce an equation.

Expectations:

- Students will work with their group of 3.
- Students will maintain their space.

Timeline:

- Exploration time: 20 minutes
- Linear Equation: 15 minutes

Post Lab Follow-Up/Conclusions:

Discuss real world application of learning from lab

- Discussion: how does this apply to you? (ex: skateboarding, learning to drive, etc.)
- How can you use this in class? What connections can you make with vocabulary and assignments?

Career Applications

- Science Fields: Scientific process
- Data processing: collecting, displaying, and analyzing data Optional or Extension Activities

•

Lab instructions: How far can the car travel?

Research Question: What will affect the distance a matchbox car will travel?

Materials:

- 1 matchbox race car
- 1 racetrack strip
- 1 measuring tape or yard/meter stick
- Books or other things to raise your track
- Recording sheet

Hypothesis:

Procedure:

- 1. Set up your racetrack strip with the top end at 6 inches.
- 2. Place your matchbox car at the top of the track and release.
- 3. Measure the horizontal distance from the start of your track to where the car stopped on its own
- 4. Record both the height and the distance in inches on the recording sheet.
- 5. Repeat steps 1-4 changing the height of the racetrack at least 10 times each trial.
- 6. Graph your data on Recording sheet.
- 7. Estimate a line of best fit
- 8. Calculate the slope.
- 9. Write the equation for the line of best fit.

Conclusion: Look at your hypothesis. Did your hypothesis and experimental data match? Or Not? What can you conclude now?

https://wa-appliedmath.org/

Handout: How far can the car travel?									
Record your track height and distance here.									
Trial	Height (inches)	Distance (inches)							
1									
2									
3									
4									
5									
6									
7									
8									
9									
10									
11									
12									
13									
14									

https://wa-appliedmath.org/

Graph your data here. X-axis=height. Y-axis=distance Measure in inches.

	1.1																			
				-	-	T														
+	++	-	+	+	+	+	-		-	-	-				-	-	-			-
+	++	-	-	+	+	+-	-	\vdash	-	_	_		-		_	_	-	-	-	-
_	++	-		\rightarrow	+	+	-		-	_	_				_	_				-
					_				_	_	_									
						Τ														
						T														
-	$^{++}$	-		+	+	t	1			-										-
+	++	+-	-	+	+	+	-		-	-										-
-	++	+	-	+	+	+	-		-	_	_	-	-	-	_	_	-	-	-	-
_	\rightarrow	-		_	_	1	_		_	_					_					_
										_										
		-				T														
-	$^{++}$	-		+	+	t			-	-										-
+	++	+	-	+	+	+	-		-	-	-		-		-	-		-		-
-	++	+-		+	+	+	-		-	_	_	_	_		_	_	-	-	-	-
_	++	-		_	_	1	-		_	_										-
						1														
		-		+	+	t			-	-										-
-	++	+	\vdash	+	+	+	-	\vdash	\neg	-	-		-		-	-	-	-		-
-	++	+	\vdash	+	+	+	-		-	_	_		-		_	_	-	-	-	-

Slope: m=_____

Equation: y=_____

https://wa-appliedmath.org/

Class period ____

Rubric: How far can the car travel?

	IB Math Crit D: Application Yr. 3	IB Science Crit C Processing and evaluating Yr. 3	Assessment Specific				
		The student is able to:					
1-2 (60 or 65%)	i. identify some of the elements of the	 collect and present data in numerical 	Collects less than 8 trials of				
	authentic real-life situation	and/or visual forms	data				
	ii. apply mathematical strategies to find a	 accurately interpret data 	 inaccurate data collection 				
	solution to the authentic real-life situation,	 state the validity of a hypothesis with 	 Inaccurate graph 				
	with limited success.	limited reference to a scientific	 no slope or equation 				
		investigation	 no or little conclusion 				
3-4 (73 or 78%)	i. identify the relevant elements of the	 correctly collect and present data in 	 Accurately collects 10 trials of 				
	authentic real-life situation	numerical and/or visual forms	data				
	ii. select, with some success, adequate	• accurately interpret data and describe	• Some points correctly graphed				
	mathematical strategies to model the	results	 Slope or equation missing or 				
	authentic real-life situation	 state the validity of a hypothesis 	inaccurate.				
	iii. apply mathematical strategies to reach a	based on the outcome of a scientific	Conclusion difficult to				
	solution to the authentic real-life situation	investigation	understand				
5-6 (83 or 88%)	i. identify the relevant elements of the	• correctly collect, organize and present	 Accurately collects 10 trials of 				
	authentic real-life situation	data in numerical and/or visual forms	data				
	ii. select adequate mathematical strategies	 accurately interpret data and describe 	 Most points correctly graphed 				
	to model the authentic reallife situation	results using scientific reasoning	 Slope and equation are 				
	iii. apply the selected mathematical	 outline the validity of a hypothesis 	accurate.				
	strategies to reach a valid solution to the	based on the outcome of a scientific	 Conclusion is easy to 				
	authentic real-life situation	investigation	understand				
7-8 (93 or 100%)	i. identify the relevant elements of the	 correctly collect, organize, transform 	 Accurately collects 10 trials of 				
	authentic real-life situation	and present data in numerical and/ or	data				
	ii. select appropriate mathematical	visual forms	 All points correctly graphed 				
	strategies to model the authentic real-life	 accurately interpret data and describe 	 Slope and equation are 				
	situation	results using correct scientific	accurate.				
	iii. apply the selected mathematical	reasoning	 Conclusion is easy to 				
	strategies to reach a correct solution to the	 discuss the validity of a hypothesis 	understand and thorough				
	authentic real-life situation	based on the outcome of a scientific investigation					

Class period ____