Lab Framework

Text: CORD Unit number and title: Unit 16 Short Description: Linear Equations Developed by: James M. Johnson Contact Information: jmjohnson2@seattleschools.org Date: June 24, 2010

LAB PLAN

<u>Lab Title</u> Linear Equations

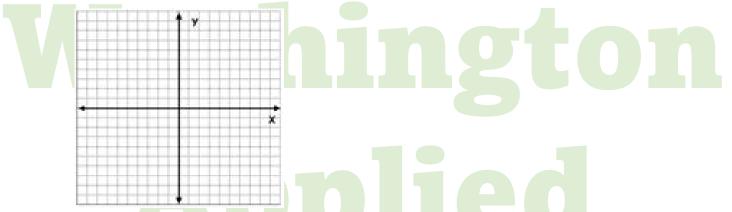
TEACHER: Teacher Prep/ Lesson Plan

• Lab Objective

To orient students with the fundamentals which define a linear equation and or function and how to determine essential information to solve practical applications.

- Statement of pre-requisite skills needed (i.e., vocabulary, measurement techniques, formulas, etc.)
- Vocabulary
 - Equation Variables Unknowns X variable X intercept Y variable Y intercept Slope Coefficient Constant Coordinate graph Solving single variable equations
- Materials List
 - Pencil Paper Ruler Calculator
- State Standards addressed

Math: A1.1A-B, A1.2A-B, A1.2B, *.1A-G, A1.2.D, A1.2.E-F, A1.3.A, A1.3.B-C, A1.4.A-C


Reading: 2.1.4, 2.1.5

Writing: 2.2.1, 2.4.1 - appliedmath.org/

Student will be required to organize into groups and conduct discussions about the task. The will be required to have constructive conversations which permit for all viewpoints in a positive manner.

• Set-up information

Review the definition of a coordinate graph and how to label the corresponding x and y axis. Review the format for a linear equation written in the form of y = mx + b

Plot the points (-1, 3), (2,-3) connect the points with a line Show students how to determine the steepness of the line called the slope by calculating the difference in the y values divided by the difference in the x value.

Linear equations have four basic forms. Each equation can be rewritten into other forms using elementary algebra.

Slope Intercept Form: y = mx + b, where b is the y-intercept of the line and m is the slope.

General (or Standard) Form: Ax + By = C, where C is a constant and A and B are constants that are not both zero. If A = 0, the solution is y = constant and represents a horizontal line. If B = 0, the solution is x = constant and represents a vertical line.

Point-Slope Form: y - y1 = m(x - x1), where the line goes through point (x1, y1) and has slope m.

Intercept Form: x/A + y/B = 1, where A and B are constant and the line has an x-intercept of (A,0) and a y-intercept of (0, B).

Personal Finance

•Pose a question to students based on them obtaining a job.

"If you get a job making \$15 per hour (m = \$15) what will the graph of your labor look like for every hour you work? How much money will you make after 6 hours (x = 6 hours), after those 6 hours you make **m** times $\mathbf{x} = 10(6) = 90 . In the linear equation above: 90(y) = 15(m)(6)(x)

• Lab organization(-Grouping/leadership opportunities/cooperative learning expectations; -Timeline required)

Set up time equals less than 10 minutes

Set up a basic display on the document camera using pennies and Arabic numbers in equation form.

- Teacher Assessment of student learning (scoring guide, rubric) Exit ticket
 - Summary of learning (to be finished after student completes lab)
 - -discuss real world application of learning from lab
 - -opportunity for students to share/present learning
 - Students will be asked to write a brief reflection on the exit ticket which
 - pertains to the real world application of this topic
- Optional activities
- Career Applications

Business, Medicine, Science, Police investigations, Athletes, Musicians and many more

Math Council

https://wa-appliedmath.org/

LAB TITLE: STUDENT INSTRUCTIONS:

- Statement of problem addressed by lab
- Grouping instructions and roles

Procedures - steps to follow/instructions

• Outcome instructions

• Assessment instructions (peer-teacher)

Vath Council

https://wa-appliedmath.org/

Lab Data Collection

Student: D	ate:	
Unit:		
Lab Title: Criteria: Write the problem/objective in statement Data Collection: Record the collected/given data		
Calculations: Complete the given calculations to se Summary Statement:	ulations: Complete the given calculations to solve for an answer(s) mary Statement:	
Other Assessment(s)		

