WAMC Lab Template

Math Concept(s): Trigonometric Functions, Unit Circle, RadiansSource / Text:curriculum.illustrativemathematics.orgDeveloped by:Victoria KelleyE-Mail: Kelley@skschools.orgD

Date: 06/21/2022

Attach the following documents:

- Lab Instructions
- Student Handout(s)
- Rubric and/or Assessment Tool

Short Description (Be sure to include where in your instruction this lab takes place):

Lab Plan

Lab Title: Discover the Unit Circle

Prerequisite skills: Basic Right Triangle Trigonometry, Formula for the Circumference of a Circle This lesson builds on the geometry course in which students learned that all circles are similar and examined arcs intercepted by given angles. That work led to defining the radian measure of an angle as the ratio of the arc length traveled to the radius of the circle. This means that 1 radian is the angle when the length of the arc it intersects on a circle of radius is. Students also learned that by this definition, and because is the ratio of the circumference of the circle to its diameter, there are radians in a full circle. This lesson includes an optional activity if students need practice recalling the definition of radian measurement.

Lab objective: This will be an initial investigation into this topic and will occur before instruction. The goal of this lesson is for students to begin their exploration of the **unit circle**, defined as a circle of radius 1 centered at the origin, which they continue in the following lesson and use throughout the remainder of the unit. They focus first on the symmetric nature of the coordinates of points (x, y) on the unit circle and then learn that these points can also be defined by their angle of rotation, which leads to working with radian angle measurements.

Standards: (Note SPECIFIC relationship to Science, Technology, and/or Engineering) Mathematics K–12 Learning Standards:

• Trigonometric Functions HSF-TF.A.2 Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions to all real numbers, interpreted as radian measures of angles traversed counterclockwise around the unit circle.

Standards for Mathematical Practice:

• <u>CCSS.MATH.PRACTICE.MP8</u> Look for and express regularity in repeated reasoning.

• <u>CCSS.MATH.PRACTICE.MP4</u> Model with mathematics.

K-12 Learning Standards-ELA (Reading, Writing, Speaking & Listening):

• <u>CCSS.ELA-LITERACY.RST.11-12.3</u> Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks; analyze the specific results based on explanations in the text.

K-12 Science Standards

 MS-ESS2-3 Patterns in rates of change and other numerical relationships can provide information about natural systems.

Technology

• 5-ESS1-2. Represent data in graphical displays (bar graphs, pictograph and/or pie charts) to reveal patterns that indicate relationships.

Engineering

• 4-PS4-3. Generate and compare multiple solutions that use patterns to transfer information.

Leadership/21st Century Skills:

	hose that apply to the above activity.) cial/Economic/Business/Entrepreneurial Lit onmental Literacy	eracy 📄 Civic Literacy	
21st Century Skills (Check those that students	will demonstrate in the above activity.)		
LEARNING AND INNOVATION	INFORMATION, MEDIA &	LIFE & CAREER SKILLS	Productivity and
Creativity and Innovation	TECHNOLOGY SKILLS	Flexibility and Adaptability	Accountability
Think Creatively	Information Literacy	Adapt to Change	Manage Projects
Work Creatively with Others	Access and Evaluate Information	Be Flexible	Produce Results
Implement Innovations	Use and manage Information	Initiative and Self-Direction	Leadership and
Critical Thinking and Problem Solving	Media Literacy	Manage Goals and Time	Responsibility
Reason Effectively	Analyze Media	Work Independently	Guide and Lead
Use Systems Thinking	Create Media Products	Be Self-Directed Learners	Others
Make Judgments and Decisions	Information, Communications and	Social and Cross-Cultural	Be Responsible to
Solve Problems	<u>Technology (ICT Literacy)</u>	Interact Effectively with Others	Others
Communication and Collaboration	Apply Technology Effectively	Work Effectively in Diverse Teams	
Communicate Clearly			
Collaborate with Others			

Teacher Preparation: (What materials and set-up are required for this lab?)

Materials

- Various Round Objects for Students to Use
- String
- Rulers

Set-Up Required:

- Arrange Round Object around the room in stations for student teams to visit
- Cut pieces of string for each team

Lab Organization Strategies:

- Leadership (Connect to 21st Century Skills selected):
- Students must collaborate with their team and discuss outcomes and identify patterns
- Students will fulfill different roles throughout the lab (materials, secretary/scribe, measurement, communication)

Cooperative Learning:

- Students must work with their team to divide up the tasks, so everyone gets a chance to fulfill each role (secretary/scribe, measurements, communications, materials)
- Everyone must be heard and all group members questions should be addressed

Expectations:

- Students will measure each radius and cut string to reflect the radius' length
- Students will measure the circumference of the circle and express that circumference in how many radii the circumference equals (They will estimate to the best of their ability with the help of their team)
- Students will identify patterns as they measure the different size round objects at each station
- Students will complete a data sheet and answer all questions on the lab worksheet.

Timeline:

• One 2-hour class period

Post Lab Follow-Up/Conclusions:

Discuss real world application of learning from lab

• Students will be able to use the concept of circumference, radius and the unit circle to understand the unit circle which they can use to solve various problems involving right triangle trigonometry (angles of elevation, angles of depression, lengths of ladders needed to reach various locations on jobs, etc.)

Career Applications

• This lab will identify parts of the unit circle that can be used to solve problems in engineering, surveying, map-making, computer graphics and many others.

Optional or Extension Activities

• Students look for regularity in repeated reasoning as they apply radian measure to examine the distance a wheel travels as it rolls for several angles, reasoning that the measure of the angle of revolution corresponds to the distance traveled when the radius is 1 (MP8).

Lab Instructions: Discover the Unit Circle

Your team needs to measure the radius of each round object around the room. Then cut the string to reflect the length of the radius. Use this piece of string to measure the circumference. Express the circumference in terms of how many radii it measures (estimate to the nearest 10th.)

- 1. What pattern do you see after measureing all of the round objects around the room?
- 2. About how many radii does it take to go halfway around the circle?
- 3. About how many radii does it take to go all the way around the circle?
- 4. Compare your answers to the previous two questions with your partners.
- 5. What is the exact number of radii that fit around the circumference of the circle? Explain how you know.
- 6. Why doesn't the number of radii that fit around the circumference of a circle depend on the radius of the circle? Explain how you know.

Group Discussion...Be prepared to share your findings.

*Teacher will make sure everyone understands how this activity relates to the Circumference Formula and how this leads to measuring angles in radians rather than degrees.

The purpose of this discussion is to ensure that all students understand why the number of radii that fit around the circumference of a circle does not depend on the size of the radius of the circle. Begin the discussion by inviting students to share how many radii it took them to go all the way around a circle, recording responses for all to see.

Invite previously identified students to share their reasoning about the exact number of radii that fit around the circumference of a circle. If not mentioned, make sure students recall that the circumference of a circle is proportional to the diameter, d and that the constant of proportionality is π , which we can see in the equation $C = 2\pi r$ or $C = \pi d$.

Next, select students to share their explanation for why the number of radii that fit around the circumference of a circle doesn't depend on the radius of the circle. Record student explanations and any diagrams used for all to see.

Rubric

Discover the Unit Circle	Points	
Students correctly measured the	0- not correct	
radius and circumference and	1- minor mistakes	
estimated reasonably.	2- correct measurments and estimation	
	of circumference in terms of radii	
Students express thoroghly how	0- no progress	
they know how many radii the	1- partial correct measurements	
circumference measures and relate	2- correct measurements using the	
that to the formula for	radius string	
circumference.	3- correct measurements using the	
	radius string and correct estimate	
	4- correct measurements using the	
	radius string, correct estimate and	
	correctly relates it to the formula for	
	Circumference	
	5- correct measurements using the	
	radius string, correct estimate, correctly	
	relates it to the formula for	
	circumference and throughly correct	
	explanations with examples	
Mathematical Practices:	3- For demonstration of practice. Partial	
Construct viable arguments and	credit can be awarded.	
critique the reasoning of others		
furing the discussuion. Students		
should include logical and thorough		
reasoning.		
Total Points:	10 points	

fotal Points: 10 points

WAMC Lesson Plan

Name(s): Victoria Kelley	Name(s): Victoria Kellev						
Email Address: Kelley@skschools.org							
Lesson Title: The Unit Circle Explained							
Date: 06/21/2022							
Text: Big Ideas – Algebra 2 STEM Co	prrelation: Math Lesson Length: 2 hrs.						
Big Idea (Cluster): Students will understand	d the Unit Circle - Trigonometry						
Mathematics K–12 Learning Standards: HSF-TF.A.2, Explain how the unit circle in the							
coordinate plane enables the extension of tr	igonometric functions to all real numbers,						
interpreted as radian measures of angles trav	versed counterclockwise around the unit circle.						
Mathematical Practice(s): 4,8							
Content Objectives: Within 3 minutes,	 Language Objectives (ELL): 						
students will be able to correctly label all	CCSS.ELA-LITERACY.RST.11-12.3 Follow						
radian and degree measures as well as x &	precisely a complex multistep procedure						
y coordinates of points on the circle	when carrying out experiments, taking						
corresponding to the 30, 60 & 90 degree	measurements, or performing technical						
reference angles from 0-360 degrees.							
	tasks; analyze the specific results based on						
	explanations in the text.						
Vocabulary:	Connections to Prior Learning:						
Radian, Unit Circle, Reference Angle,	Right Triangle Trigonometry						
Quadrant, Coordinates							
Questions to Develop Mathematical	Common Misconceptions:						
Thinking:	• Sin θ and Cos θ order in the ordered pairs (Cos θ ,						
What patterns do you see between the signs of the pagedington in each	Sin 0)						
signs of the coordinates in each	Evaluating Square Roots						
quadrant?	Answering in Degrees when Radians are called						
What pattern do you see between the soordinates of each point and the long	for and vice versa						
coordinates of each point and the long and short sides of the corresponding	Not understanding how to evaluate						
right triangles?	expressions like $Sin(\pi/6)$, thinking you want						
 How does the Pythagorean Theorem 	them to tell you it's 30 degrees rather than the						
relate to the coordinates of each point?	side length, y-coordinate of the point						
 When using the Pythagorean Theorem, 	 Not understanding when calculating tangent, it's a ratio of the 2 coordinates. 						
what is the length of the hypothenuse	 Not knowing how to reduce or rationalize 						
of each right triangle in the unit circle?	denominators when calculating the tangent						

Assessment (Formative and Summative):

• Students will fill out all angles (degrees and radians) and all coordinates of common angles

Materials:

• Blank Unit Circles (1 with 30-60-90 triangles, 1 with 45-45-90 degree triangles)

Instruction Plan:

Introduction: We will review the Discovering the Unit Circle lab findings

Explore: Students will calculate all values in quadrants II, III & IV after we do quadrant 1 together

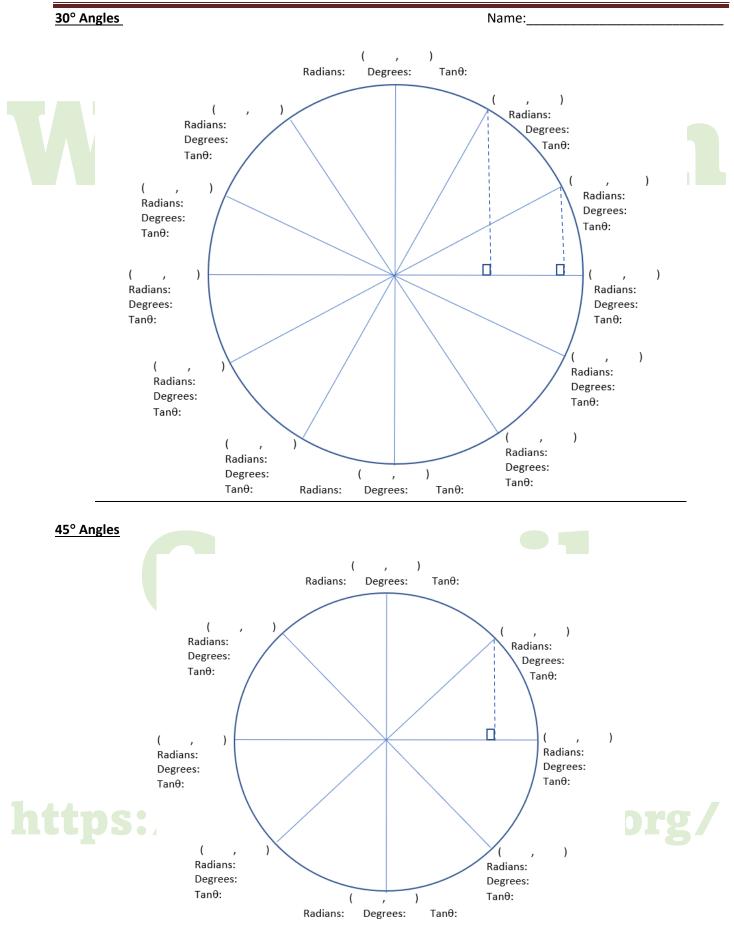
When I observe students: they will be using the 30-60-90 and 45-45-90 triangle models to find all the coordinates of the points around the Unit Circle and noticing patterns. They will also determine all radian measures noticing 30-60-90 degree angles cut the circle into 12-1/6ths and the 45-45-90 degree angles cut the circle into 8-1/4ths.

Questions to Develop Mathematical Thinking as you observe: What patterns do you recognize? What do you notice about the signs in each quadrant?

Answers: The same values repeat depending on the short and long sides of the triangles. The signs follow those for points in each quadrant.

Summarize: Students will realize that the same values repeat around the circle from quadrant I with only the signs changes according to each quadrant.

Career Application(s):


• Engineering, geography, building, construction, sciences, etc.

Leadership/21st Century Skills:

Global Awareness F Health/Safety Literacy E	neck those that apply to the above activity.) Financial/Economic/Business/Entrepreneurial Lite Environmental Literacy dents will demonstrate in the above activity.)	eracy	
LEARNING AND INNOVATION	INFORMATION, MEDIA &	LIFE & CAREER SKILLS	Productivity and
Creativity and Innovation	TECHNOLOGY SKILLS	Flexibility and Adaptability	Accountability
Think Creatively	Information Literacy	Adapt to Change	Manage Projects
Work Creatively with Others	Access and Evaluate Information	Be Flexible	Produce Results
Implement Innovations	Use and manage Information	Initiative and Self-Direction	Leadership and
Critical Thinking and Problem Solving	Media Literacy	Manage Goals and Time	<u>Responsibility</u>
Reason Effectively	Analyze Media	Work Independently	Guide and Lead
Use Systems Thinking	Create Media Products	Be Self-Directed Learners	Others
Make Judgments and Decisions	Information, Communications and	Social and Cross-Cultural	Be Responsible to
Solve Problems	Technology (ICT Literacy)	Interact Effectively with Others	Others
Communication and Collaboration	Apply Technology Effectively	Work Effectively in Diverse Teams	
Communicate Clearly			
Collaborate with Others			

https://wa-appliedmath.org/

WAMC Lesson Plan

