WAMC Lab Template

Math Concept(s): Cosine Function, Force, WorkSource / Text: Big Ideas Math - Algebra 2 A Common Core Curriculum by Larson & BoswellDeveloped by: Victoria KelleyE-Mail: Kelley@skschools.orgDate: 06/21/2022

Attach the following documents:

- Lab Instructions
- Student Handout(s)
- Rubric and/or Assessment Tool

Short Description (Be sure to include where in your instruction this lab takes place): Lab Plan

Lab Title: Work smarter not harder.

Prerequisite skills: Parallel and Perpendicular Forces, Rearrange Formulas, Basic Trigonometry, Understand the concept of Force.

Lab objective: To figure out the work required to move a heavy table by using Trigonometry to calculate "work" by pulling or pushing a table and considering the angle of the pulling/pushing force. This will be an initial investigation into this topic and will occur before instruction.

<u>Standards: (Note SPECIFIC relationship to Science, Technology, and/or Engineering)</u> Mathematics K–12 Learning Standards:

<u>CCSS.MATH.CONTENT.HSG.SRT.D.11</u>

(+) Understand and apply the Law of Sines and the Law of Cosines to find unknown measurements in right and non-right triangles (e.g., surveying problems, resultant forces).

Standards for Mathematical Practice:

- Make sense of problems and persevere in solving them.
- Reason abstractly and quantitatively.
- Model with mathematics.

K-12 Learning Standards-ELA (Reading, Writing, Speaking & Listening):

• <u>CCSS.ELA-LITERACY.RST.11-12.3</u> Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks; analyze the specific results based on explanations in the text.

K-12 Science Standards

• K-PS2-1. Plan and conduct an investigation to compare the effects of different strengths or different directions of pushes and pulls on the motion of an object.

Technology

• 3.d. Students build knowledge by actively exploring real-world issues and problems,

developing ideas and theories and pursuing answers and solutions.

Engineering

• Conduct an investigation and evaluate the experimental design to produce data to serve as the basis for evidence that can meet the goals of the investigation. (MS-PS2-5)

Leadership/21st Century Skills:

21st Century Interdisciplinary themes (Check those that apply to the above activity.) Global Awareness Financial/Economic/Business/Entrepreneurial Literacy Health/Safety Literacy Environmental Literacy					
21st Century Skills (Check those that students will demonstrate in the above activity.)					
LEARNING AND INNOVATION	INFORMATION, MEDIA &	LIFE & CAREER SKILLS	Productivity and		
Creativity and Innovation	TECHNOLOGY SKILLS	Flexibility and Adaptability	Accountability		
Think Creatively	Information Literacy	Adapt to Change	Manage Projects		
Work Creatively with Others	Access and Evaluate Information	Be Flexible	Produce Results		
Implement Innovations	Use and manage Information	Initiative and Self-Direction	Leadership and		
Critical Thinking and Problem Solving	Media Literacy	Manage Goals and Time	Responsibility		
Reason Effectively	Analyze Media	Work Independently	Guide and Lead		
Use Systems Thinking	Create Media Products	Be Self-Directed Learners	Others		
Make Judgments and Decisions	Information, Communications and	Social and Cross-Cultural	Be Responsible to		
Solve Problems	Technology (ICT Literacy)	Interact Effectively with Others	Others		
Communication and Collaboration	Apply Technology Effectively	Work Effectively in Diverse Teams			
Communicate Clearly					
Collaborate with Others					

Teacher Preparation: (What materials and set-up are required for this lab?)

Materials

- One table with books/items stacked on it to create weight
- One force meter to measure the force used to pull the table
- One scale to measure the push force

Set-Up Required:

- Stack items on table
- Tie a rope around one side of the table for teams to "pull"
- Attach the hook pull meter to the rope for pulling measurements
- Students pushing will use the scale to push by holding it to the edge of the table

Lab Organization Strategies:

Leadership (Connect to 21st Century Skills selected):

- Students must hypothesize with teammates and come up with a strategy to pull or push the table at a certain angle to use the least "work"
- Students will fulfill different roles throughout the lab (materials, secretary/scribe, the force, communication)

Cooperative Learning:

- Students must work with their team to agree on a method to move the table considering the angle (up high/down low) and whether they will pull or push it to use the least work
- Students will fulfill different roles throughout the lab (materials, secretary/scribe, the force, communication)

Expectations:

- Student will calculate the "work" used to move the table 10 feet
- They will strategize together
- They will accurately measure the force and then use that to calculate the work
- Students will use cell phones to measure the angle of the person's arms who is pushing

the table or the angle of the rope the person uses to pull the table

Timeline:

• One 2-hour class period

Post Lab Follow-Up/Conclusions:

Discuss real world application of learning from lab

• What is the easiest way to move a heavy object

Career Applications

• Engineering, Construction, Design, Automotive

Optional or Extension Activities

- How does the angle of force applied to the object affect the force required to move it?
- What direction should you apply force to minimize the work required to move it?
- Describe the physical circumstances requiring the greatest and least amount of force to move an object. Use mathematics to explain why this is true.
- Do you use less work by pushing or pulling a heavy object?

Lab Instructions: Work smarter not harder.

Your team needs to move a heavy table across the room (10 ft.) What is the easiest way to move it? You will tie a rope around the front legs of the table and pull it. What angle should you pull from? Up high? Down low? How can trigonometry help you make the right decision? In general, we think of **work** as anything that requires effort, like homework, or going to work, meaning a job, or doing work around the house, meaning chores. But in math and physics, the idea of work is very specific and relies on trigonometry. This definition of work requires a force to act upon an object and for that object to move due to the applied force. The amount of work done depends on the strength of the **force F**, the **distance d** that the object moves, and the **angle 9** between the force and the direction of the motion.

Work is measured in a unit called **Joules** and is defined by $W = F \bullet d \bullet \cos \theta$.

- 1. How many Joules of work were required for your team to move the table 10 feet?
- 2. What variables effect the work required?
- 3. How can you adjust those variables to do even less work to move the table?
- 4. Discuss your results with other teams in the room. Did they do more or less work than your team to move the table? How did their variables differ from your team?

	Rubric		
	Work smarter not harder.	Points	
	Students correctly evaluated the cosine function to determine the amount of work their team did to move the table.	0- not correct 1- minor mistakes in calculation 2- correct use of formula and answer	
	Students understand how each variable effects the work function and can accurately describe how to change their variable to do more and less work.	0- no correct answers 1- partially correct explanations 2- mostly correct explanations 3- correct explanations 4- thoroughly correct explanations 5- throughly correct explanations with examples	th.org
	Mathematical Practices: Construct viable arguments and critique the reasoning of others. Students should include logical and thorough reasoning.	3- For demonstration of practice. Partial credit can be awarded.	
	Total Points:	10 points	

WAMC Lesson Plan

	Name(s): Victoria Kelley				
	Email Address: Kelley@skschools.org				
	Lesson Title: The Unit Circle Explained				
	Date: 06/21/2022				
	Text: Big Ideas – Algebra 2 STEM Correlation: Math Lesson Length: 2 hrs.				
	Big Idea (Cluster): Students will understand	ig Idea (Cluster): Students will understand the Unit Circle - Trigonometry			
N	Mathematics K-12 Learning Standards: H:	SF-TF.A.2			
V	Mathematical Practice(s): 4,8				
	Content Objectives:	Language Objectives (ELL):			
	Students will be able to correctly label all	CCSS.ELA-LITERACY.RST.9-10.7			
	radian and degree measures as well as x $\&$	Translate quantitative or technical information			
	y coordinates of points on the circle	expressed in words in a text into visual form (e.g.,			
	corresponding to the 30, 60 & 90 degree	a table or chart) and translate information			
	reference angles from 0-360 degrees.	expressed visually or mathematically (e.g. in an			
		equation) into words			
		equation) into words.			
		Connections to Prior Learning:			
	Radian, Unit Circle, Reference Angle,	Right Triangle Trigonometry, Geometry			
	Quadrant, Coordinates, Sino, Coso, Tano				
	Questions to Develop Mathematical	Common Misconcentions:			
	Thinking	• Sinfl and Cosfl order in the ordered pairs (Cosfl			
	What patterns do you see between the	Sin a)			
	signs of the coordinates in each	 Evaluating Square Roots 			
	quadrant?	• Answering in Degrees when Radians are called			
	• What pattern do you see between the	for and vice versa			
	coordinates of each point and the long	 Not understanding how to evaluate 			
	and short sides of the corresponding	expressions like Sin($\pi/6$), thinking you want			
	right triangles?	them to tell you it's 30 degrees rather than the			
	How does the Pythagorean Theorem	side length, y-coordinate of the point			
	relate to the coordinates of each point?	 Not understanding when calculating tangent, 			
	• When using the Pythagorean Theorem,	it's a ratio of the 2 coordinates.			
	what is the length of the hypothenuse	 Not knowing how to reduce or rationalize 			
	of each right triangle in the unit circle?	denominators when calculating the tangent			
	• Which coordinate represents the $\sin \theta$				
	and which represents the Cost in each				
	ordered pair :				
	How could you calculate the range for				
	 How would the each of the values 				
	 How would the each of the values change if given a circle twice as large 				
	was given?	pileamath.org/			
- 1					

WAMC Lesson Plan

Assessment (Formative and Summative):

- Students will fill out all angles (degrees and radians) and all coordinates of common angles
- Assessment will continue to be given through the year until students can fill it in with 100% accuracy in 3 mins or less

Materials:

• Blank Unit Circles (1 with 30-60-90 triangles, 1 with 45-45-90 degree triangles)

Instruction Plan:

Introduction:

We will review the *Discovering the Unit Circle* lab findings and how to find the side lengths of the 30-60-90 & 45-45-90 triangles. We will also label the places on the circle that represent the total circumference of 2π and π .

Explore:

Students will calculate all values in quadrants II, III & IV after we do quadrant 1 together

When I observe students:

They will be using the 30-60-90 and 45-45-90 triangle models to find all the coordinates of the points around the Unit Circle and noticing patterns. They will also determine all radian measures noticing 30-60-90 degree angles cut the circle into 12 pieces and the 45-45-90 degree angles cut the circle into 8 pieces.

Questions to Develop Mathematical Thinking as you observe:

What patterns do you recognize? What do you notice about the signs in each quadrant?

Answers:

The same values repeat depending on the short and long sides of the triangles. The signs follow those for points in each quadrant.

Summarize:

Students will realize that the same values repeat around the circle from quadrant I with only the signs changes according to each quadrant. Students will also calculate the Tangent for each angle.

Career Application(s):

• architecture, engineering, geography, astronomy, digital imaging, and a host of other fields

Leadership/21st Century Skills:

